to give ethyl 9-(methylphenylamino)-6-methyl-4-oxo-6,7-di-hydro- $4 H$-pyrido $[1,2-a$]pyrimidine-3-carboxylate ($46 ; 2.9 \mathrm{~g}, 58 \%$), mp 140-142 ${ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
The ethyl 9-(methylphenylamino)dihydropyridopyrimidine3 -carboxylate 46 ($2 \mathrm{~g}, 5.9 \mathrm{mmol}$) was stirred in 1% sodium hydroxide solution (100 mL) at $60-70^{\circ} \mathrm{C}$ for 4 h . The pH of the solution was adjusted to 2 with 10% hydrochloric acid, and the precipitated 9-(methylphenylamino)dihydropyridopyrimidine-3carboxylic acid 28 was filtered off, washed with water, dried, and crystallized.

Registry No. 2, 70999-20-1; 3, 70999-31-4; 4, 32092-24-3; 5, 70998-87-7; 6, 86610-83-5; 7, 32092-14-1; 8, 86610-84-6; 9, 86610-85-7; 10, 86610-86-8; 11, 64399-30-0; 12, 86610-87-9; 13, 86610-88-0; 14, 71165-25-8; 15, 71165-95-2; 16, 86610-89-1; 17, 86610-90-4; 18, 82074-89-3; 19, 86610-91-5; 20, 86610-92-6; 21, 86610-93-7; 22, 70943-70-3; 23, 77020-26-9; 24, 71222-75-8; 25, 70993-81-6; 26, 71222-67-8; 27, 77020-32-7; 28, 77020-28-1; 29,

71222-64-5; 30, 86610-94-8; 31, 86610-95-9; 32, 86610-96-0; 33, 86610-97-1; 34, 77020-40-7; 35, 86610-98-2; 36, 86610-99-3; 37, 86611-00-9; 38, 86611-01-0; 39, 77020-37-2; 40, 86611-02-1; 41, 77020-41-8; 42, 86611-03-2; 43, 70943-64-5; 44, 38326-49-7; 45, 71222-72-5; 46, 71222-65-6; aniline, 62-53-3; N-methylaniline, 100-61-8; 2-methylaniline, 95-53-4; 3-methylaniline, 108-44-1; 3 -fluoroaniline, 372-19-0; 4-fluoroaniline, 371-40-4; 2-bromoaniline, 615-36-1; 3-bromoaniline, 591-19-5; 3-iodoaniline, 626-01-7; 4hydroxyaniline, 123-30-8; 2-aminobenzoic acid, 118-92-3; 3aminobenzoic acid, 99-05-8; 4-aminobenzoic acid, 150-13-0; 3acetylaniline, 99-03-6; 1-naphthylamine, 134-32-7; 2-naphthylamine, 91-59-8.

Supplementary Material Available: Yields and melting points of 129 -(arylamino)-6-methyl-4-oxo-6,7-dihydro- 4 H -pyrido[1,2-a]pyrimidine-3-carboxylic acids, which were inactive when administered orally, are collected in Table III (1 page). Ordering information is given on any current masthead page.

Antiallergic Agents. 2. ${ }^{1} \boldsymbol{N}$-(1 \boldsymbol{H}-Tetrazol-5-yl)-6-phenyl-2-pyridinecarboxamides

Yasushi Honma,,${ }^{, \dagger}$ Kuniyuki Oda, ${ }^{\dagger}$ Tomiki Hashiyama, ${ }^{\dagger}$ Kyoji Hanamoto, ${ }^{\dagger}$ Hideo Nakai, ${ }^{\dagger}$ Hirozumi Inoue, ${ }^{\dagger}$ Akihiko Ishida, ${ }^{\dagger}$ Mikio Takeda, ${ }^{\dagger}$ Yasutoshi Ono ${ }^{\ddagger}{ }^{\ddagger}$ and Kei Tsuzurahara ${ }^{\ddagger}$
Organic Chemistry Research Laboratory and Pharmacological Research Laboratory, Tanabe Seiyaku Co., Ltd., 2-2-50, Kawagishi, Toda-shi, Saitama 335, Japan. Received February 8, 1983

Abstract

A new series of N-(1 H -tetrazol- 5 -yl)-6-phenyl-2-pyridinecarboxamides was prepared to determine the effects of substituents on the benzene and pyridine rings on antiallergic activity in the rat passive cutaneous anaphylaxis (PCA) assay after oral administration. One member of this series, N -(1 H -tetrazol- 5 -yl) -4 -methyl-6-[4-(methylamino)-phenyl]-2-pyridinecarboxamide (231), has an ED_{50} value of $0.8 \mathrm{mg} / \mathrm{kg}$ po and is 85 times more potent than disodium cromoglycate (DSCG) on intravenous administration. Further evaluation of 231 as a clinically useful antiallergic agent is in progress.

Extensive efforts ${ }^{2}$ have been made to find an orally active and more potent antiallergic agent possessing pharmacological properties similar to those of disodium cromoglycate (DSCG). ${ }^{3}$

We have previously reported that some N-(1H-tetra-zol-5-yl)-6-phenyl-2-pyridinecarboxamides (1, X = H; R

1
$=\mathrm{H}, \mathrm{OMe}, \mathrm{Cl})$ displayed remarkably high potencies in the rat PCA test on oral administration. ${ }^{1}$ Our attention was next focused on exploring this lead in an effort to enhance the activity. In this paper we describe the synthesis and antiallergic activity of this new series of N-tetrazolylpyridinecarboxamides represented by general structure 1 , which bears various substituents on the benzene and pyridine rings.

Chemistry. Most of the N-(1H-tetrazol-5-yl)-6-phenyl-2-pyridinecarboxamides listed in table I were prepared by condensation of the corresponding carboxylic acid chloride with 5 -aminotetrazole (method A). ${ }^{4}$

The route for the preparation of the carboxylic acids ${ }^{5}$ (5-7) is illustrated in Scheme I and is analogous to that described previously. ${ }^{1}$
The 6-phenyl-4-alkyl-2-pyridinecarboxylic acids ${ }^{5}$ (11) were synthesized from the appropriate 2-phenylpyridine

[^0]Scheme I ${ }^{a}$

$a_{a}=\mathrm{CH}_{3} \mathrm{COCH}_{3}, \mathrm{NaOH} ; b=\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2} / \mathrm{NaH} ; \mathrm{c}=\mathrm{Br}_{2} /$ $\mathrm{CS}_{2} ; \mathrm{d}=\mathrm{KOAc} / \mathrm{ROH}$ or DMF. $\mathrm{e}=\mathrm{NH}_{3} / \mathrm{EtOH}, 100-110$ ${ }^{\circ} \mathrm{C} ; \mathrm{f}=$ concentrated $\mathrm{HCl} ; \mathrm{g}=$ (1) POCl_{3} or SOCl_{2}, (2) MeOH. $h=R X, \mathrm{~K}_{2} \mathrm{CO}_{3} / \mathrm{DMF} ; \mathrm{i}=\mathrm{KOH} / \mathrm{MeOH} ; \mathrm{j}=$ $\mathrm{MeONa} / \mathrm{MeOH} ; \mathrm{k}=\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$.

Scheme II ${ }^{a}$

$\quad \begin{gathered}a \\ a=30 \% \\ \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{AcOH} ; \mathrm{b}=(1) \mathrm{Me}_{2} \mathrm{SO}_{4} ;(2)=\mathrm{NaCN} ; ~\end{gathered}$ $c=$ concentrated HCl , reflux.
(8) ${ }^{7}$ via a Reissert-Kaufman-type reaction ${ }^{8}$ (Scheme II). The derivatives possessing amino functions on the benzene

Scheme III

Scheme IV

ring were prepared by the route shown in Schemes III and IV. Compound $12(\mathrm{R}=\mathrm{OH})$ was prepared by hydrogenation of $3\left(\mathrm{X}=4-\mathrm{NO}_{2}\right)$, followed by ammonolysis and hydrolysis. Acetylation of $12(\mathrm{R}=\mathrm{OH})$ with $\mathrm{Ac}_{2} \mathrm{O}$ / pyridine, hydrolytic workup, and subsequent methylation with $\mathrm{MeI} / \mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF afforded $13(\mathrm{R}=\mathrm{OMe})$ after alkaline hydrolysis.

Coupling of 13 and 14 with 5 -aminotetrazole was achieved in the presence of N, N^{\prime}-carbonyldiimidazole (method B). ${ }^{4}$ The amino and alkylamino derivatives were prepared by catalytic hydrogenation (method C) of 15 and 17, respectively, the route to which is shown in Scheme IV. Treatment with $\mathrm{HBr}-\mathrm{AcOH}$ was the method of choice for the removal of the N-benzyloxycarbonyl group in the case of $17\left(\mathrm{R}=\mathrm{Cl} ; \mathrm{R}^{1}=\mathrm{H}\right)$.

Results and Discussion

The N-(1H-tetrazol-5-yl)-6-phenyl-2-pyridinecarboxamides were evaluated for their antiallergic activity in the
(1) For Part 1 of this series, see Honma, Y.; Sekine, Y.; Hashiyama, T.; Takeda, M.; Ono, Y.; Tsuzurahara, K. Chem. Pharm. Bull. 1982, 30, 4314.
(2) Delvin, J. P. Annu. Rep. Med. Chem. 1981, 16, 61, and earlier volumes.
(3) Speight, R. N.; Aery, G. S. Drugs 1974, 7, 164.
(4) Ellis, G. P.; Becket, G. T. P.; Shaw, D.; Wilson, H. K.; Vardey, C. J.; Skidmore, I. F. J. Med. Chem. 1978, 21, 1120.
(5) None of the requisite carboxylic acids have been disclosed in the literature, to the best of our knowledge, except for 6-phenyl-2-pyridinecarboxylic acid. ${ }^{6}$
(6) Haring, M.; Prijs, B.; Erlenmeyer, H. Helv. Chim. Acta 1954, 37, 147.
(7) (a) Evans, J. C. W.; Allen, C. F. In "Organic Syntheses"; Wiley: New York, 1943; Collect. Vol. II, p 517. (b) van Bergen, T. J.; Kellog, R. M. J. Org. Chem. 1971, 36, 1705. (c) Osuch, C.; Levine, R. J. Am. Chem. Soc. 1956, 78, 1723.
(8) (a) Feely, W. E.; Beavers, E. M. J. Am. Chem. Soc. 1959, 81, 4004. (b) Feely, W. E.; Evanega, G.; Beavers, E. M. In "Organic Syntheses", Wiley: New York, 1973; Collect. Vol. V, p 269.
rat PCA reaction after oral administration, as described previously. ${ }^{1}$
Effects of the substituents on the benzene ring on antiallergic activity were first examined in an attempt to maximize the potency. In the 4 -chloropyridine series (18), a marked enhancement of activity was observed by methyl $(18 \mathrm{~g})$ and amino ($\mathbf{1 8 n}$) substitution at the para position of the benzene ring. This effect was generally observed in the other 4 -substituted and unsubstituted pyridine series. Transposition of the methyl or amino group to the meta or ortho position from the para position caused a marked decrease of the activity ($\mathbf{1 8 f}, \mathbf{1 9 q}, \mathbf{2 2 h}, \mathbf{2 3 d}$, and 23 j), even to the extent as to be less active than the respective parent.
Introduction of a chloro, methoxy, nitro, or acetamido group onto the benzene ring also lowered the activity in most cases. An unfavorable effect of the meta or ortho substitution was generally observed regardless of the nature of the substituent (19b, 19c, and 22b). Therefore, some minor modifications of the methyl or amino substituent at the para position were examined further. These analogues, however, did not show any further significant improvement over the parent compounds in each series.

While it is difficult to draw any firm conclusion from these results, it is interesting that the activity of this series of compounds is mainly affected by the substituent on the benzene ring but only slightly, if at all, but that of the 4 -substituent on the pyridine nucleus. ${ }^{9}$

After pharmacological evaluation of the most active compounds, N-(1H-tetrazol-5-yl)-4-methyl-6-[4-(methylamino) phenyl]-2-pyridinecarboxamide (231) was selected for further study as a candidate of clinically useful antiallergic agents. Its ID_{50} value in the rat PCA system is $0.8 \mathrm{mg} / \mathrm{kg}$, po. On intravenous administration, it is approximately 85 times more potent than DSCG ($\mathrm{ID}_{50}=0.95$ $\mathrm{mg} / \mathrm{kg}$). Details of pharmacological studies on 231 will be the subject of our forthcoming publications.

Experimental Section

Melting points were determined on a Yamato capillary melting point apparatus and are uncorrected. IR spectra were taken on a Hitachi IR-215 spectrometer, and NMR spectra were taken at 60 MHz on a JEOL PMX -60 spectrometer as a solution in CDCl_{3} or $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ with tetramethylsilane as an internal standard. Mass spectra were obtained on a Hitachi RMU-6M instrument. All spectra were consistent with the expected structure.

6-Phenyl-4-oxo-1 H-pyran-2-carboxylates (3). These compounds were prepared from benzaldehyde (2) according to Soliman's procedure. ${ }^{10}$

6-(4-Ethylphenyl)-4-hydroxy-2-pyridinecarboxylic Acid ($4, \mathrm{X}=4-\mathrm{Et}$). A mixture of $10.0 \mathrm{~g}(0.0367 \mathrm{~mol})$ of $3(\mathrm{X}=4-\mathrm{Et}$; $\mathrm{R}=\mathrm{Et})$ and $17 \% \mathrm{NH}_{3}-\mathrm{EtOH}(70 \mathrm{~mL})$ was heated at $100-110$ ${ }^{\circ} \mathrm{C}$ in a sealed tube for 18 h . The reaction mixture was cooled, and the preceipitate was filtered. A mixture of the precipitate and 150 mL of concentrated HCl was heated under reflux for 18 h. The resulting solution was concentrated to dryness in vacuo. The residue was triturated with $\mathrm{H}_{2} \mathrm{O}$, filtered, washed with EtOH , and dried to give $6.1 \mathrm{~g}(89 \%)$ of $4(\mathrm{X}=4-\mathrm{Et}), \mathrm{mp} 227-229^{\circ} \mathrm{C}$, which was used directly for subsequent reaction.

4-Chloro-6-(4-ethylphenyl)-2-pyridinecarboxylic Acid (5, $\mathbf{R}=\mathbf{H} ; \mathbf{X}=4$-Et). Compound $4(\mathrm{X}=4-\mathrm{Et})(6.5 \mathrm{~g}, 0.0267 \mathrm{~mol})$ and $\mathrm{SOCl}_{2}(50 \mathrm{~mL})$ were heated at reflux temperature for 5 h . The mixture was concentrated to dryness in vacuo. MeOH (50 mL) was added, and the solution was warmed on a water bath. Evaporation of the solvent gave an oily residue, which was
(9) This was inferred from the preliminary study of the quantitative structure-activity relationships of this series of compounds. Miyagishima, T.; Uchiyama, H., unpublished results. To them, acknowledgment should be addressed.
(10) Soliman, G.; Rateb, L. J. Chem. Soc. 1956, 3663.
crystallized from aqueous MeOH to give $6.85 \mathrm{~g}(93 \%)$ of $5(\mathrm{R}=$ $\mathrm{Me}, \mathrm{X}=4$-Et), $\mathrm{mp} 87-90^{\circ} \mathrm{C}$. This compound (1.90 g) was dissolved in $5 \% \mathrm{KOH}-\mathrm{MeOH}(40 \mathrm{~mL})$ on a water bath and allowed to stand at room temperature for 1 h . The solution was evaporated in vacuo, and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$. The aqueous solution was made acidic with $10 \% \mathrm{HCl}$ to precipitate $5(\mathrm{R}=\mathrm{H}$; $\mathrm{X}=4$-Et) $(2.54 \mathrm{~g}, 98 \%), \mathrm{mp} 159-162^{\circ} \mathrm{C}$.

6-(4-Ethylphenyl)-4-methoxy-2-pyridinecarboxylic Acid ($6, \mathrm{R}=\mathrm{Me} ; \mathbf{X}=4-\mathrm{Et})$. A mixture of $4.0 \mathrm{~g}(0.0165 \mathrm{~mol})$ of $4(\mathrm{X}$ $=4-\mathrm{Et}), 4.5 \mathrm{~mL}(0.072 \mathrm{~mol})$ of $\mathrm{MeI}, 6.8 \mathrm{~g}(0.049 \mathrm{~mol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and 30 mL of DMF was heated at $80^{\circ} \mathrm{C}$ for 2 h with stirring. The solvent was evaporated in vacuo. $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added, and the crystalline solid was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried. The crude product was recrystallized from EtOH to give 3.0 g (67%) of $6\left(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=4\right.$-Et), $\mathrm{mp} 79-83^{\circ} \mathrm{C}$. This compound (2.60 g) was treated with $5 \% \mathrm{KOH}-\mathrm{MeOH}$, as described for the preparation of 5 , to give $2.40 \mathrm{~g}(97 \%)$ of $6(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=4-\mathrm{Et})$, $\mathrm{mp} 130-133^{\circ} \mathrm{C}$ dec.

6-(4-Ethylphenyl)-2-pyridinecarboxylic Acid (7, X = 4-Et). A solution of $3.0 \mathrm{~g}(0.011 \mathrm{~mol})$ of $5(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=4-\mathrm{Et})$ in 60 mL of MeOH and 5 mL of $10 \% \mathrm{HCl}$ was hydrogenated at ambient pressure in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(0.3 \mathrm{~g})$ for 22 h , during which time 1 equiv of H_{2} was taken up. The catalyst was filtered off, and the filtrate was evaporated in vacuo. The oily residue (3 g) was treated with $5 \% \mathrm{KOH}-\mathrm{MeOH}(80 \mathrm{~mL}$), as described for the preparation of 5 , to give $2.68 \mathrm{~g}(81 \%)$ of 7 ($\mathrm{X}=4$-Et), mp $125-128^{\circ} \mathrm{C}$.

4-Methyl-6-phenyl-2-pyridinecarboxylic Acid (11, R = Me; $\mathbf{X}=\mathbf{H})$. A mixture of $3.3 \mathrm{~g}(0.0195 \mathrm{~mol})$ of $8(\mathrm{R}=\mathrm{Me} ; X=\mathrm{H}){ }^{7 \mathrm{c}}$ $4.53 \mathrm{~mL}(0.038 \mathrm{~mol})$ of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, and 11 mL of AcOH was heated at $80^{\circ} \mathrm{C}$ for 4 h . Additional $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(2.3 \mathrm{~mL}, 0.02 \mathrm{~mol})$ was added, and heating was continued for an additional 16 h . The solvent was removed in vacuo, and the residue was diluted with $\mathrm{H}_{2} \mathrm{O}$, made basic with $\mathrm{K}_{2} \mathrm{CO}_{3}$, and extracted with CHCl_{3}. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo to give $3.14 \mathrm{~g}(85 \%)$ of the N-oxide $9(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=\mathrm{H})$, $\mathrm{mp} 116-118^{\circ} \mathrm{C}$ (isopropyl ether). Anal. ($\left.\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. A mixture of $2.16 \mathrm{~g}(0.0117 \mathrm{~mol})$ of this compound and 1.49 g (0.0118 mol) of $\mathrm{Me}_{2} \mathrm{SO}_{4}$ was heated at $80-90^{\circ} \mathrm{C}$ for 2 h with stirring. After cooling, the mixture was dissolved in dioxane (6 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$, and then a solution of $1.75 \mathrm{~g}(0.0357 \mathrm{~mol})$ of NaCN in 15 mL of $\mathrm{H}_{2} \mathrm{O}$ was added slowly at $5-10{ }^{\circ} \mathrm{C}$ with vigorous stirring. After being stirred at room temperature for 30 min , the whole mixture was extracted with ether. The organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo to give the nitrile $10(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=\mathrm{H})$, which was used directly for subsequent hydrolysis. A mixture of the nitrile and $5 \mathrm{M} \mathrm{HCl}(40 \mathrm{~mL})$ was refluxed for 11 h . The resulting solution was evaporated in vacuo, and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$, brought to $\mathrm{pH} 3-4$ with $10 \% \mathrm{NaOH}$, and extracted with CHCl_{3}. The extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo to give a syrup, which was crystallized from ether-hexane to give $2.3 \mathrm{~g}(81 \%)$ of $11(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=\mathrm{H})$. Recrystallization (ether-hexane) gave an analytical sample, mp $109-111{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Methyl 6-(4-Aminophenyl)-4-hydroxy-2-pyridinecarboxylate ($12, \mathbf{R}=\mathbf{O H} ; \mathbf{R}^{1}=\mathbf{M e}$). A mixture of $59 \mathrm{~g}(0.23$ mol) of $3\left(\mathrm{R}=\mathrm{Et}\right.$; $\left.\mathrm{X}=4-\mathrm{NO}_{2}\right), 10 \mathrm{~g}$ of AcONa , and 400 mL of DMF was shaken with H_{2} in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(6 \mathrm{~g})$. After the theroretical amount of H_{2} had been absorbed, the catalyst was filtered off. $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$ was added to the filtrate, and the resulting solid was collected by filtration to give 30 g (57.6%) of $3\left(\mathrm{R}=\mathrm{Et} ; \mathrm{X}=4-\mathrm{NH}_{2}\right), \mathrm{mp} 175-180^{\circ} \mathrm{C}$. This compound ($24 \mathrm{~g}, 0.0988 \mathrm{~mol}$) was treated as described for the preparation of 4 to afford $12\left(\mathrm{R}=\mathrm{OH} ; \mathrm{R}^{1}=\mathrm{H}\right)$, which was heated under reflux with 400 mL of saturated $\mathrm{HCl}-\mathrm{MeOH}$ for 14 h . The solvent was evaporated in vacuo, and the residue was taken up in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The solution was neutralized with NaHCO_{3} The precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried to obtain $11.4 \mathrm{~g}(48.5 \%)$ of $12\left(\mathrm{R}=\mathrm{OH} ; \mathrm{R}^{1}=\mathrm{Me}\right), \mathrm{mp} 188-190^{\circ} \mathrm{C}$.

Ethyl 6-(4-Aminophenyl)-4-methyl-2-pyridinecarboxylate (12, $\left.\mathbf{R}=\mathrm{Me}, \mathbf{R}^{1}=\mathrm{Et}\right)$. To a cooled solution of $12\left(\mathrm{R}=\mathrm{Me} ; \mathrm{R}^{1}\right.$ $=\mathrm{H})$, prepared from $19.1 \mathrm{~g}(0.74 \mathrm{~mol})$ of $11\left(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=4-\mathrm{NO}_{2}\right)$ by catalytic hydrogenation, in 800 mL of EtOH was added 40 mL of SOCl_{2} carefully. The resulting solution was refluxed for 4 h and then treated with charcoal. Evaporation of the solvent gave
crystals, which was recrystallized from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$ to give 19.4 $\mathrm{g}(89.6 \%)$ of $12 \cdot \mathrm{HCl}\left(\mathrm{R}=\mathrm{Me} ; \mathrm{R}^{1}=\mathrm{Et}\right), \mathrm{mp} 210^{-213}{ }^{\circ} \mathrm{C}$.

6-(4-Acetamidophenyl)-4-methoxy-2-pyridinecarboxylic Acid (13, $\mathbf{R}=\mathbf{O M e}$). A mixture of $1.03 \mathrm{~g}(4.33 \mathrm{mmol})$ of $12 \cdot \mathrm{HCl}$ ($\mathrm{R}=\mathrm{OH} ; \mathrm{R}^{1}=\mathrm{Me}$), 15 mL of $\mathrm{Ac}_{2} \mathrm{O}, 0.5 \mathrm{~mL}$ of pyridine, and 20 mL of THF was heated under reflux for 3 h . The solvent was evaporated in vacuo, and the residual solid was triturated with $\mathrm{H}_{2} \mathrm{O}$ and collected by filtration. A solution of the solid in 10 mL of $10 \% \mathrm{NaOH}$ and 30 mL of MeOH was allowed to stir at room termperature for 4.5 h . The solution was acidified with $10 \% \mathrm{HCl}$ to give a solid, which was collected by filtration. 6-(4-Acet-amidophenyl)-4-hydroxy-2-pyridinecarboxylic acid thus obtained was converted to $0.47 \mathrm{~g}(38 \%)$ of $13(\mathrm{R}=\mathrm{OMe}), \mathrm{mp} 234-235^{\circ} \mathrm{C}$ dec, as described for the preparation of 6 .

6-[4-(Diethylamino)phenyl]-4-methyl-2-pyridinecarboxylic Acid (14, $\left.\mathbf{R}=\mathbf{M e} ; \mathbf{R}^{1}=\mathbf{E t}\right)$. A mixture of 3.50 g (0.012 mol) of $12 \cdot \mathrm{HCl}\left(\mathrm{R}=\mathrm{Me} ; \mathrm{R}^{1}=\mathrm{Et}\right), 10 \mathrm{~mL}(0.133 \mathrm{~mol})$ of $\mathrm{EtBr}, 8.8 \mathrm{~g}$ (0.0638 mol) of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and 30 mL of DMF was stirred at $50^{\circ} \mathrm{C}$ for 0.5 h . The bath temperature was raised to $100^{\circ} \mathrm{C}$, and heating was continued for an additional 3 h . The insoluble materials were removed by filtration, and the filtrate was evaporated in vacuo. $\mathrm{H}_{2} \mathrm{O}$ was added, and the liberated oil was extracted with ethyl acetate. The extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and decolorized with charcoal. Evaporation of the solvent gave a pale yellow oil (3.4 g), which was subjected to column chromatography on silica gel eluting with CHCl_{3}-ethyl acetate (10:1) to afford $2.6 \mathrm{~g}(69.6 \%)$ of the ethyl ester of $14\left(\mathrm{R}=\mathrm{Me} ; \mathrm{R}^{1}=\mathrm{Et}\right)$, $\operatorname{mp} 68-69^{\circ} \mathrm{C}$. The ester $(2.5 \mathrm{~g})$ and $8 \% \mathrm{HCl}(40 \mathrm{~mL})$ were heated at $80^{\circ} \mathrm{C}$ for 5 h . The resulting solution was concentrated to dryness in vacuo to give $2.6 \mathrm{~g}(100 \%)$ of $14 \cdot \mathrm{HCl}\left(\mathrm{R}=\mathrm{Me} ; \mathrm{R}^{1}=\right.$ Et), mp $223-235^{\circ} \mathrm{C}$ dec.

6-[4-[(Benzyloxycarbonyl)methylamino]phenyl-4-methyl-2-pyridinecarboxylic Acid ($16, \mathbf{R}=\mathbf{R}^{1}=\mathbf{M e}$). Benzyloxycarbonyl chloride ($4.2 \mathrm{~g}, 0.0246 \mathrm{~mol}$) was added dropwise to a cooled mixture of $6.0 \mathrm{~g}(0.0205 \mathrm{~mol})$ of $12 \cdot \mathrm{HCl}\left(\mathrm{R}=\mathrm{Me} ; \mathrm{R}^{1}\right.$ $=\mathrm{Et}$), 6.0 g of $\mathrm{NaHCO}_{3}, 150 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$, and 150 mL of ethyl acetate. After being stirred for 45 min , the mixture was made acidic with $10 \% \mathrm{HCl}$. The resulting solid was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried. The organic layer of the filtrate was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo, and the residue was crystallized from ethyl acetate. Filtration gave a solid, which was combined with the above solid and recrystallized from EtOH to give $6.0 \mathrm{~g}(75 \%)$ of the ethyl ester of $16\left(R=M e ; R^{1}\right.$ $=\mathrm{H}), \mathrm{mp} 184-185{ }^{\circ} \mathrm{C}$. A mixture of the ester, $15 \mathrm{~mL}(0.162 \mathrm{~mol})$ of MeI, $18 \mathrm{~g}(0.13 \mathrm{~mol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and 50 mL of DMF was stirred at room temperature for 18 h . The insoluble materials were removed by filtration. The filtrate was concentrated in vacuo. The residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ethyl acetate. The extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was chilled in ethyl acetate, and insoluble materials were filtered off. The filtrate was evaporated in vacuo, and the residue was chromatographed on silica gel eluting with CHCl_{3}-ethyl acetate ($10: 1$) to give 2.7 g (43.4%) of the ethyl ester of $16\left(R=R^{1}=M e\right)$ as a syrup. The ester was treated with $5 \% \mathrm{KOH}-\mathrm{MeOH}$ as described for the preparation of 5 to give $2.4 \mathrm{~g}(95.5 \%)$ of $16\left(R=R^{1}=\mathrm{Me}\right)$ as a light yellow oil.

Method A. $\quad \boldsymbol{N}$-(1H-Tetrazol-5-yl)-6-(4-ethylphenyl)-4-methoxy-2-pyridinecarboxamide (19 j). A mixture of 2.38 g (9.25 mmol) of $6(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=4-\mathrm{Et})$ and 20 mL of SOCl_{2} was refluxed for 1 h . The resulting solution was evaporated in vacuo to give a syrup, which was dissolved in 25 mL of DMF and treated with a solution of $0.87 \mathrm{~g}(10.1 \mathrm{mmol})$ of 5 -aminotetrazole, 2.8 g of NEt_{3}, and 10 mL of DMF under ice cooling. After being heated at $80^{\circ} \mathrm{C}$ for 2 h , the mixture was evaporated in vacuo and dissolved in $\mathrm{H}_{2} \mathrm{O}$. The solution was brought to $\mathrm{pH} 2-3$ with $10 \% \mathrm{HCl}$, and the resulting solid was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried. Recrystallization from DMF-EtOH gave $1.56 \mathrm{~g}(52 \%)$ of $\mathbf{1 9 j}$.

Method B. N-(1H-Tetrazol-5-yl)-6-[4-(diethylamino)-phenyl]-4-ethoxy-2-pyridinecarboxamide (20d). Carbonyldiimidazole ($0.32 \mathrm{~g}, 1.98 \mathrm{mmol}$) was added to a solution of 0.56 $\mathrm{g}(1.78 \mathrm{mmol})$ of $14\left(\mathrm{R}=\mathrm{OEt} ; \mathrm{R}^{1}=\mathrm{Et}\right)$ in 8 mL of DMF , and the mixture was stirred at room temperature for 1 h . After the addition of $0.17 \mathrm{~g}(2.0 \mathrm{mmol})$ of 5 -aminotetrazole, the mixture was heated at $60-70^{\circ} \mathrm{C}$ for 2 h . Workup as described above afforded $0.52 \mathrm{~g}(77 \%)$ of 20 d .

no.	R	X		yield, ${ }^{b}$ \%	dec pt, ${ }^{\circ} \mathrm{C}$	recrystn solvent ${ }^{c}$	formula ${ }^{\text {d }}$	rat PCA: \% inhibin ${ }^{e}$ at the following po dose				$\stackrel{\square}{8}$
			method ${ }^{\text {a }}$					$0.3 \mathrm{mg} / \mathrm{k}$	$1.0 \mathrm{mg} / \mathrm{kg}$	3.0 mg/	$0.0 \mathrm{mg} / \mathrm{kg}$	-
$18 \mathbf{a}^{f}$	Cl	H							40			$\stackrel{9}{7}$
18b	Cl	4-Cl	A	74	280-281	D-E	$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}$			11^{t}	63^{s}	$\stackrel{9}{3}$
18c	Cl	3-OMe	A	72	255-263	D-E-H	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{6} \mathrm{O}_{2}$	32	51	95		䟴
18d	Cl	4-OMe	A	80	250-251	E*	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{6} \mathrm{O}_{2}$	40	43	100		§
18 e	Cl	3,4-(OMe$)_{2}$	A	48	250-251	E*	$\mathrm{C}_{15}^{1} \mathrm{H}_{13} \mathrm{ClN}_{6} \mathrm{O}_{3} \cdot \mathbf{0 . 5} \mathrm{H}_{2} \mathrm{O}$		15^{t}	30^{t}		
18 f	Cl	2 -Me	A	78	~ 160 darken	E*	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{6} \mathrm{O}^{\mathbf{g}}$				24^{t}	8
18g	Cl	4-Me	A	79	259-262	D-E	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{6} \mathrm{O}$	10^{t}	86			${ }_{6}$
18h	Cl	4-Et	B	60	261-264	D-E	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{6} \mathrm{O}$	13^{s}	49	100		Σ
18i	Cl	$4-n-\mathrm{Pr}_{\text {r }}$	A	81	251-253	E*	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}_{6} \mathrm{O}$	42	78			$\stackrel{1}{2}$
18j	Cl	$4-i-\mathrm{Pr}$	A	66	249-252	D-E	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}{ }^{6} \mathrm{O}$		$14{ }^{t}$	68	90	\%
18k	Cl	$4-n$-Bu	A	46	245-250	D-E	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{6} \mathrm{O}_{3}{ }^{h}$		0	83		8
181	Cl	$3,4-\mathrm{Me}_{2}$	A	35	252-255	D-H	$\mathrm{C}_{15} \mathrm{H}_{3} \mathrm{ClN}_{6} \mathrm{O}^{3}$			$32{ }^{t}$	58^{s}	3
18 m	Cl	$4-\mathrm{NO}_{2}$	A	70	289-290	D-E	$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClN}_{7} \mathrm{O}_{3}$			$23{ }^{t}$	48^{t}	
18 n f	Cl	$4-\mathrm{NH}_{2}$	D	64	200	E*	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClN}_{7} \mathrm{O} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	39	100	100		$\stackrel{\square}{-}$
$19 \mathbf{a}^{f}$	OMe	H							62	97	100	
19 b	OMe	$2-\mathrm{Cl}$	A	64	251-254	D-E-H	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{6} \mathrm{O}_{2}$				$17{ }^{t}$	
19c	OMe	$3-\mathrm{Cl}$	A	62	253-255	E*	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{6} \mathrm{O}_{2}$			34	64	
19d	OMe	4-Cl	A	56	269-270	D-E	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{6} \mathrm{O}_{2}$		0	12^{t}	55	
19e	OMe	2-OMe	A	27	266-267	E	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{3}$	$35^{\text {s }}$	41^{t}	68		
19 f	OMe	4-OMe	A	61	264-265	D-E	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{3}$		$25{ }^{t}$	60		
19 g	OMe	3,4-(OMe) ${ }_{2}$	A	59	246-247	D-E	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 0.5 \mathrm{DMF}$		$18{ }^{t}$	$62^{\text {s }}$	51	
19 h	OMe	$3,4,5-(\mathrm{OMe})_{3}$	B	58	244-245	M	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{5}$			0	25^{t}	
19 i	OMe	4-Me	A	65	269-273	E*	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2}$	16^{t}	42			
19j	OMe	4-Et	A	52	254-256	D-E	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}$	23	43			
19k	OMe	$4-n-\mathrm{Pr}$	A	57	251-252	D	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2}$	$32{ }^{t}$	73	93		
191	OMe	$4-i-\mathrm{Pr}$	B	58	229.5-230.5	E*	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2}$	29^{t}	54			
19 m	OMe	$4-n-\mathrm{Bu}$	A	58	233-238	D-E	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2}$		$29{ }^{t}$	61	92	
$19 n$	OMe	$4-t-\mathrm{Bu}$	A	58	257-259	D-H	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{i}$		$29{ }^{t}$	$68^{\text {s }}$		
190	OMe	3,4-Me ${ }_{2}$	A	58	242-245	D-H	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}$		$21{ }^{t}$	82		
19p	OMe	$4-\mathrm{NO}_{2}$	A	82	279-281	D	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{7}^{6} \mathrm{O}_{4}$				$6^{6}{ }^{t}$	
19q	OMe	$3-\mathrm{NH}_{2}$	C	63	259-260	D	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{2}$		27*	41	58^{s}	
19 r	OMe	4-NH2	C	25	251-253	E*	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{2}$	12^{s}	50^{s}			
19 s	OMe	4-NHMe	C	87	251-252	D-E	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$		35^{t}	79		
19 t	OMe	4-NMe ${ }_{2}$	B	50	261-263	D-E	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}_{2}$	29	64	100		
19 u	OMe	4-NHAc	B	85	286-288	D-E	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{O}_{3}$		$\underset{0}{0}$	27^{t}	100	
20a	OEt	H	A	63	262-263	D-E	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{j}$		29^{t}	51^{s}		
20 b	OEt	${ }_{4}^{4-\mathrm{Me}}$	A	50	261-262	D-E	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}$	26^{t}	65			
20c	OEt	$4-\mathrm{NH}_{2}$	C	74	263-265	E*	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.5 \mathrm{EtOH}$	19^{t}	52	62		
20d	OEt	4-NEt ${ }_{2}$	B	77	228-230	$\underset{\text { D }}{ } \mathbf{E}$	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2}$	44	66			
21a	$\mathrm{O}-\mathrm{n}-\mathrm{Pr}$	H	A	32	234-236	E	$\mathrm{C}_{16} \mathrm{H}_{41} \mathrm{~N}_{6} \mathrm{O}_{2} k$	${ }_{7}$	27^{5}	100		\%
	$\mathrm{O}-\mathrm{n}-\mathrm{Pr}$ H	4-NH2 H	C	35	237-240	I*	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	7^{t}	64 36	68 74		-
$22{ }^{22}{ }^{\text {a }}$	H H	H 2 -OMe	A	68	246-247	D-E	$\mathrm{C}_{14} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{2}$		36^{5}	74	81	$\stackrel{+}{8}$

Method C. \boldsymbol{N}-(1H-Tetrazol-5-yl)-4-methyl-6-[4-(methyl-amino)phenyl]-2-pyridinecarboxamide (231). A solution of $0.48 \mathrm{~g}(1.08 \mathrm{mmol})$ of $17\left(\mathrm{R}=\mathrm{R}^{1}=\mathrm{Me}\right)$ in 2 mL of $10 \% \mathrm{NaOH}$, 20 mL of $\mathrm{H}_{2} \mathrm{O}$, and 20 mL of EtOH was hydrogenated over 10% $\mathrm{Pd} / \mathrm{C}(0.1 \mathrm{~g})$. After the theoretical amount of H_{2} had been absorbed, the catalyst was filtered off. The filtrate was acidified with $10 \% \mathrm{HCl}$, and the resulting solid was collected, washed with EtOH , and recrystallized from DMF-EtOH to give $0.32 \mathrm{~g}(96 \%)$ of 231 .

Method D. \boldsymbol{N}-(1H-Tetrazol-5-yl)-6-(4-aminophenyl)-4-chloro-2-pyridinecarboxamide (18n). A mixture of $0.43 \mathrm{~g}(0.937$ $\mathrm{mmol})$ of $17\left(\mathrm{R}=\mathrm{Cl} ; \mathrm{R}^{1}=\mathrm{H}\right)$ and 4 mL of $25 \% \mathrm{HBr}-\mathrm{AcOH}$ was stirred at room temperature for $4 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added, and the resulting precipitate was filtered and washed with $\mathrm{H}_{2} \mathrm{O}$ and EtOH , successively, to afford $0.19 \mathrm{~g}(64 \%)$ of 18 n .
Passive Cutaneous Anaphylaxis. Male Sprague-Dawley rats (ca. 200 g in body weight) were immunized with an extract of Ascaris suum according to the method of Strejan and Campbell, ${ }^{11}$ except for the antigen doses (2 and 0.2 mg of protein for the first and second immunizations, respectively). The sensitized rats were bled 2 weeks after the second immunization, and the sera were assayed for IgE in the rat PCA. IgE was confirmed by its heat lability and long-lasting fixation on the rat skin.

Rats were passively sensitized by injecting intracutaneously on the back 0.05 mL of the diluted antiserum. Twenty-four hours later, they were challenged by injecting intravenously 1 mL of a solution containing 0.5 mg of Ascaris protein and 5 mg of Evans blue. PCA reactions were assayed 30 min after the challenge and expressed as the product of the largest diameter (centimeters) and its perpendicular diameter of the blueing area. Control PCA reactions were $1.27 \pm 0.03 \mathrm{~cm}^{2}$ in this definition. Test compounds (as a sodium salt) were dissolved or suspended in saline containing 0.5% carboxymethylcellulose and administered orally to the sensitized rats ($N=2$ to 4 , mostly 3) 15 min before challenge.

The antiallergic activity of the compounds was expressed as percent inhibition of the PCA reaction compared with control rats.

Acknowledgment. The authors are indebted to Dr. S. Takeyama for preparing the manuscript for publication and helpful discussions. The authors thank Drs. S. Saito, A. Kiyomoto, and H. Nakajima for their encouragement and many suggestions during this work. Thanks are also due to T. Murata and A. Watanabe for their technical assistance and to the staff of the Analytical Center of Tanabe Seiyaku Co. Ltd., for spectral measurements and elemental analyses.

Registry No. 3 ($\mathrm{R}=\mathrm{Et}$; $\mathrm{X}=4$-Et), 86696-35-7; 3 ($\mathrm{R}=\mathrm{Et}$; $\left.\mathrm{X}=4-\mathrm{NO}_{2}\right), 76781-89-0 ; 3\left(\mathrm{R}=\mathrm{Et} ; \mathrm{X}=4-\mathrm{NH}_{2}\right), 80021-86-9 ; 4$ ($\mathrm{X}=4$-Et), 86696-36-8; 5 ($\mathrm{R}=\mathrm{H}$; $\mathrm{X}=4$-Et), 86696-37-9; 6 (R $=\mathrm{Me} ; \mathrm{X}=4-\mathrm{Et}), 86696-38-0 ; 6(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=2-\mathrm{Cl}), 86696-53-9$; $6(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=3-\mathrm{Cl}), 86696-54-0 ; 6(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=4-\mathrm{Cl})$, 86696-55-1; 6 ($\mathrm{R}=\mathrm{Me} ; \mathrm{X}=2$-OMe), 86696-56-2; 6 ($\mathrm{R}=\mathrm{Me}$; X $=4-\mathrm{OMe}), 86696-57-3 ; 6\left(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=3,4-(\mathrm{OMe})_{2}\right), 86696-58-4$;

[^1]$6\left(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=3,4,5-(\mathrm{OMe})_{3}\right), 86696-59-5 ; 6(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=4-\mathrm{Me})$, 86696-60-8; $6(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=4-n-\mathrm{Pr}), 86696-61-9 ; 6(\mathrm{R}=\mathrm{Me} ; \mathrm{X}$ $=4-i-\mathrm{Pr}), 86696-62-0 ; 6(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=4-n-\mathrm{Bu}), 86696-63-1 ; 6(\mathrm{R}$ $=\mathrm{Me} ; \mathrm{X}=4-t-\mathrm{Bu}), 86696-64-2 ; 6\left(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=3,4-\mathrm{Me}_{2}\right)$, 86696-65-3; $6\left(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=4-\mathrm{NO}_{2}\right), 80021-52-9 ; 6(\mathrm{R}=\mathrm{Et} ; \mathrm{X}$ $=\mathrm{H}), 86696-66-4 ; 6(\mathrm{R}=\mathrm{Et} ; \mathrm{X}=4-\mathrm{Me}), 86696-67-5 ; 6(\mathrm{R}=n-\mathrm{Pr} ;$ $\mathrm{X}=\mathrm{H}$), 86696-68-6; $7(\mathrm{X}=4$-Et), 86696-39-1; 7 (X = 2-OMe), 86696-69-7; 7 ($\mathrm{X}=4-\mathrm{OMe}$), 86696-70-0; 7 [$\left.\mathrm{X}=3,4,5-(\mathrm{OMe})_{3}\right]$, 86696-71-1; $7\left(\mathrm{X}=4-\mathrm{Me}\right.$), 86696-72-2; $7\left(\mathrm{X}=3,4-\mathrm{Me}_{2}\right), 86696-73-3$; $8(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=\mathrm{H}), 3475-21-6 ; 9(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=\mathrm{H}), 80635-42-3 ;$ $10(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=\mathrm{H}), 80635-45-6 ; 11(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=\mathrm{H}), 80635-46-7$; $11\left(\mathrm{R}=\mathrm{Me} ; \mathrm{X}=4-\mathrm{NO}_{2}\right), 80021-38-1 ; 11(\mathrm{R}=\mathrm{Cl} ; \mathrm{X}=4-\mathrm{Cl})$, 86696-42-6; 11 ($\mathrm{R}=\mathrm{Cl} ; \mathrm{X}=3$-OMe), 86696-43-7; 11 (R = Cl; X $=4-\mathrm{OMe}), 86696-44-8 ; 11\left[\mathrm{R}=\mathrm{Cl} ; \mathrm{X}=3,4-(\mathrm{OMe})_{2}\right], 86696-45-9$; 11 ($\mathrm{R}=\mathrm{Cl} ; \mathrm{X}=2-\mathrm{Me}$), 86696-46-0; $11(\mathrm{R}=\mathrm{Cl} ; \mathrm{X}=4-\mathrm{Me})$, 86696-47-1; 11 ($\mathrm{R}=\mathrm{Cl}$; $\mathrm{X}=4-n-\mathrm{Pr}$), 86696-48-2; $11(\mathrm{R}=\mathrm{Cl} ; \mathrm{X}$ $=4-i-\mathrm{Pr}), 86696-49-3 ; 11(\mathrm{R}=\mathrm{Cl} ; \mathrm{X}=4-n-\mathrm{Bu}), 86696-50-6 ; 11$ $\left(\mathrm{R}=\mathrm{Cl} ; \mathrm{X}=3,4-\mathrm{Me}_{2}\right), 86696-51-7 ; 11\left(\mathrm{R}=\mathrm{Cl} ; \mathrm{X}=4-\mathrm{NO}_{2}\right)$, 86696-52-8; 11 ($\mathrm{R}=\mathrm{Me} ; \mathrm{X}=3-\mathrm{OMe}$), 80636-14-2; 11 ($\mathrm{R}=n$ - Pr ; $\mathrm{X}=\mathrm{H}), 80636-11-9 ; 11(\mathrm{R}=n-\mathrm{Pr} ; \mathrm{X}=4-\mathrm{Me}), 80636-20-0 ; 11(\mathrm{R}$ $=i-\mathrm{Pr} ; \mathrm{X}=4-\mathrm{Me}), 80636-21-1 ; 11(\mathrm{R}=n-\mathrm{Bu} ; \mathrm{X}=\mathrm{H}), 80636-12-0$; $11(\mathrm{R}=n-\mathrm{Bu} ; \mathrm{X}=3-\mathrm{Me}), 80636-17-5 ; 11(\mathrm{R}=n-\mathrm{Bu} ; \mathrm{X}=4-\mathrm{Et})$, 86696-74-4; $11(\mathrm{R}=i$ - $\mathrm{Bu} ; \mathrm{X}=\mathrm{H}), 80636-13-1 ; 11(\mathrm{R}=i-\mathrm{Bu} ; \mathrm{X}$ $=4-\mathrm{Me}), 80636-22-2 ; 11(\mathrm{R}=i-\mathrm{Bu} ; \mathrm{X}=4-n-\mathrm{Bu}), 80636-29-9 ; 12$ $\left(\mathrm{R}=\mathrm{OH} ; \mathrm{R}^{1}=\mathrm{Me}\right), 80021-88-1 ; 12 \cdot \mathrm{HCl}\left(\mathrm{R}=\mathrm{Me} ; \mathrm{R}^{1}=\mathrm{Et}\right)$, 80021-71-2; 12 ($\mathrm{R}=\mathrm{Me} ; \mathrm{R}^{1}=\mathrm{H}$), 86696-41-5; $13(\mathrm{R}=\mathrm{OMe})$, $80020-95-7 ; 13 \cdot \mathrm{HCl}\left(\mathrm{R}=\mathrm{Me} ; \mathrm{R}^{1}=\mathrm{Et}\right), 80021-75-6 ; 14(\mathrm{R}=\mathrm{OMe} ;$ $\left.\mathrm{R}^{1}=\mathrm{Me}\right), 80020-86-6 ; 14\left(\mathrm{R}=\mathrm{OEt} ; \mathrm{R}^{1}=\mathrm{Et}\right), 80020-97-9 ; 16(\mathrm{R}$ $\left.=\mathrm{R}^{1}=\mathrm{Me}\right)$, 80021-10-9; $17\left(\mathrm{R}=\mathrm{Cl} ; \mathrm{R}^{1}=\mathrm{H}\right), 86696-75-5 ; 17(\mathrm{R}$ $\left.=\mathrm{OMe} ; \mathrm{R}^{1}=\mathrm{H}\right), 86696-77-7 ; 17\left(\mathrm{R}=\mathrm{OMe} ; \mathrm{R}^{1}=\mathrm{Me}\right), 86696-78-8$; 17 ($\mathrm{R}=\mathrm{OEt} ; \mathrm{R}^{1}=\mathrm{H}$), 86696-79-9; $17\left(\mathrm{R}=0-n-\mathrm{Pr} ; \mathrm{R}^{1}=\mathrm{H}\right)$, 86696-80-2; $17\left(\mathrm{R}=\mathrm{R}^{1}=\mathrm{H}\right), 86696-82-4 ; 17\left(\mathrm{R}=\mathrm{H} ; \mathrm{R}^{1}=\mathrm{Me}\right)$, 86696-83-5; $17\left(\mathrm{R}=i\right.$ - $\left.\mathrm{Pr} ; \mathrm{R}^{1}=\mathrm{H}\right), 86696-84-6 ; 17\left(\mathrm{R}=n-\mathrm{Bu} ; \mathrm{R}^{1}\right.$ $=\mathrm{H}$), 86696-85-7; 18a, 78296-74-9; 18b, 78296-75-0; 18c, 78296-77-2; 18d, 78296-78-3; 18e, 78296-80-7; 18f, 78296-76-1; 18g, 78296-73-8; 18h, 78296-72-7; 18i, 78312-70-6; 18j, 78296-62-5; 18k, $78296-64-7$; 181, 78296-66-9; 18m, 78296-81-8; 18n, 80021-57-4; 19a, 78296-45-4; 19b, 78296-46-5; 19c, 78296-47-6; 19d, 78296-48-7; 19e, $78296-50-1$; 19f, 78296-83-0; 19g, 78296-52-3; 19h, 78296-71-6; 19i, $78296-49-8 ; 19 \mathrm{j}, 78296-59-0 ; 19 \mathbf{k}, 78296-61-4 ; 191,78296-70-5 ; 19 \mathrm{~m}$, $78296-63-6 ; 19 \mathrm{n}, 78296-65-8$; 190, 78296-67-0; 19p, 78296-53-4; 19q, 80021-32-5; 19r, 80021-53-0; 19s, 80021-16-5; 19t, 80020-87-7; 19u, 80020-96-8; 20a, 78296-54-5; 20b, 78296-55-6; 20c, 80021-20-1; 20d, 80021-69-8; 21a, 78296-56-7; 21b, 80021-24-5; 22a, 78296-84-1; 22b, 78296-43-2; 22c, 78296-44-3; 22d, 78296-69-2; 22e, 78296-42-1; 22f, 78296-60-3; 22g, 78296-68-1; 22h, 80021-36-9; 22i, 80021-28-9; 22j, 80021-08-5; 23a, 80635-48-9; 23b, 80635-54-7; 23c, 80635-55-8; 23d, 80635-56-9; 23e, 80635-58-1; 23f, 80635-63-8; 23g, 80635-65-0; 23h, 80635-66-1; 23i, 80635-67-2; 23j, 86696-40-4; 23k, 80021-40-5; 231, 80021-12-1; 23m, 80020-90-2; 23n, 80020-93-5; 23o, 80021-04-1; 24a, 80635-50-3; 24b, 80635-59-2; 24c, 80635-68-3; 25a, 80635-51-4; 25b, 80635-60-5; 26a, 80635-61-6; 26b, 80021-47-2; 27a, 80635-52-5; 27b, 80635-57-0; 27c, 80635-64-9; 27d, 80021-51-8; 28a, 80635-53-6; 28b, 80635-62-7; 28c, 80635-69-4; 4-methoxy-6-[3-[N-(benzyl-oxycarbonyl)- N-methylamino]phenyl]- N-(1 H-tetrazol-5-yl)-2pyridinecarboxamide, $86696-76-6 ; \quad 6-[3-[N$-(benzyloxy-carbonyl)- N-methylamino]phenyl]- N-(1H-tetrazol-5-yl)-2pyridinecarboxamide, 86696-81-3.

[^0]: ${ }^{\dagger}$ Organic Chemistry Research Laboratory.
 \# Pharmacological Research Laboratory.

[^1]: (11) Strejan, G.; Campbell, D. H. J. Immunol. 1968, 101, 628.

